python中使用牛顿迭代法,python牛顿代法,''' root = n
文章由Byrx.net分享于2019-03-23 07:03:24
python中使用牛顿迭代法,python牛顿代法,''' root = n
''' root = newtonRaphson(f,df,a,b,tol=1.0e-9). Finds a root of f(x) = 0 by combining the Newton-Raphson method with bisection. The root must be bracketed in (a,b). Calls user-supplied functions f(x) and its derivative df(x). ''' def newtonRaphson(f,df,a,b,tol=1.0e-9): import error fa = f(a) if fa == 0.0: return a fb = f(b) if fb == 0.0: return b if fa*fb > 0.0: error.err('Root is not bracketed') x = 0.5*(a + b) for i in range(30): fx = f(x) if abs(fx) < tol: return x # Tighten the brackets on the root if fa*fx < 0.0: b = x else: a = x # Try a Newton-Raphson step dfx = df(x) # If division by zero, push x out of bounds try: dx = -fx/dfx except ZeroDivisionError: dx = b - a x = x + dx # If the result is outside the brackets, use bisection if (b - x)*(x - a) < 0.0: dx = 0.5*(b - a) x = a + dx # Check for convergence if abs(dx) < tol*max(abs(b),1.0): return x print 'Too many iterations in Newton-Raphson'
评论关闭