Python近期使用较少算法实现方法,python近期较少算法,这是一个简单python
Python近期使用较少算法实现方法,python近期较少算法,这是一个简单python
这是一个简单python最近比较少使用的算法,python最近最少使用算法代码会涉及到Python字典、文件系统的访问数据、Python类、Python for循环控制语句等等相关知识。
代码中有些英文注释,需要这个python实现的最近最少使用算法代码的朋友们,可以自行去翻译一下,python 注释还是很好用的。
下面我们一起来看下正式的代码段:
""" from __future__ import generators import time from heapq import heappush, heappop, heapify # the suffix after the hyphen denotes modifications by the # ftputil project with respect to the original version __version__ = "0.2-1" __all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] __docformat__ = 'reStructuredText en' DEFAULT_SIZE = 16 """Default size of a new LRUCache object, if no 'size' argument is given.""" class CacheKeyError(KeyError): """Error raised when cache requests fail When a cache record is accessed which no longer exists (or never did), this error is raised. To avoid it, you may want to check for the existence of a cache record before reading or deleting it.""" pass class LRUCache(object): """Least-Recently-Used (LRU) cache. Instances of this class provide a least-recently-used (LRU) cache. They emulate a Python mapping type. You can use an LRU cache more or less like a Python dictionary, with the exception that objects you put into the cache may be discarded before you take them out. Some example usage:: cache = LRUCache(32) # new cache cache['foo'] = get_file_contents('foo') # or whatever if 'foo' in cache: # if it's still in cache... # use cached version contents = cache['foo'] else: # recalculate contents = get_file_contents('foo') # store in cache for next time cache['foo'] = contents print cache.size # Maximum size print len(cache) # 0 <= len(cache) <= cache.size cache.size = 10 # Auto-shrink on size assignment for i in range(50): # note: larger than cache size cache[i] = i if 0 not in cache: print 'Zero was discarded.' if 42 in cache: del cache[42] # Manual deletion for j in cache: # iterate (in LRU order) print j, cache[j] # iterator produces keys, not values """ class __Node(object): """Record of a cached value. Not for public consumption.""" def __init__(self, key, obj, timestamp, sort_key): object.__init__(self) self.key = key self.obj = obj self.atime = timestamp self.mtime = sel#www.iplaypy.comf.atime self._sort_key = sort_key def __cmp__(self, other): return cmp(self._sort_key, other._sort_key) def __repr__(self): return "<%s %s => %s (%s)>" % \ (self.__class__, self.key, self.obj, \ time.asctime(time.localtime(self.atime))) def __init__(self, size=DEFAULT_SIZE): # Check arguments if size <= 0: raise ValueError, size elif type(size) is not type(0): raise TypeError, size object.__init__(self) self.__heap = [] self.__dict = {} """Maximum size of the cache. If more than 'size' elements are added to the cache, the least-recently-used ones will be discarded.""" self.size = size self.__counter = 0 def _sort_key(self): """Return a new integer value upon every call. Cache nodes need a monotonically increasing time indicator. time.time() and time.clock() don't guarantee this in a platform-independent way. """ self.__counter += 1 return self.__counter def __len__(self): return len(self.__heap) def __contains__(self, key): return self.__dict.has_key(key) def __setitem__(self, key, obj): if self.__dict.has_key(key): node = self.__dict[key] # update node object in-place node.obj = obj node.atime = time.time() node.mtime = node.atime node._sort_key = self._sort_key() heapify(self.__heap) else: # size may have been reset, so we loop while len(self.__heap) >= self.size: lru = heappop(self.__heap) del self.__dict[lru.key] node = self.__Node(key, obj, time.time(), self._sort_key()) self.__dict[key] = node heappush(self.__heap, node) def __getitem__(self, key): if not self.__dict.has_key(key): raise CacheKeyError(key) else: node = self.__dict[key] # update node object in-place node.atime = time.time() node._sort_key = self._sort_key() heapify(self.__heap) return node.obj def __delitem__(self, key): if not self.__dict.has_key(key): raise CacheKeyError(key) else: node = self.__dict[key] del self.__dict[key] self.__heap.remove(node) heapify(self.__heap) return node.obj def __iter__(self): copy = self.__heap[:] while len(copy) > 0: node = heappop(copy) yield node.key raise StopIteration def __setattr__(self, name, value): object.__setattr__(self, name, value) # automagically shrink heap on resize if name == 'size': while len(self.__heap) > value: lru = heappop(self.__heap) del self.__dict[lru.key] def __repr__(self): return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap)) def mtime(self, key): """Return the last modification time for the cache record with key. May be useful for cache instances where the stored values can get 'stale', such as caching file or network resource contents.""" if not self.__dict.has_key(key): raise CacheKeyError(key) else: node = self.__dict[key] return node.mtime if __name__ == "__main__": cache = LRUCache(25) print cache for i in range(50): cache[i] = str(i) print cache if 46 in cache: print "46 in cache" del cache[46] print cache cache.size = 10 print cache cache[46] = '46' print cache print len(cache) for c in cache: print c print cache print cache.mtime(46) for c in cache: print c
浏览此文章用户还在关注:python from import使用方法。
编橙之家文章,
相关内容
- 用Python来处理中文分句的方法_【源码精华】,,我在用
- 用Python生成随机的中文验证码图片,,在登录很多网站的
- Python方法批量重命名MP3文件,python重命名,Python方法批量
- Python threading多线程断点下载文件的方法,pythonthreadin
- python3.2 数据存储pickle模块的使用方法详解,python3.2pi
- 用Python为Vim编写的小插件源码分享,pythonvim编写源码
- 如何让django接入新浪微博OAuth的方法,djangooauth,本篇p
- web.py页面执行计时,Python装饰器实现方法,web.pypython
- Python替换字符串空格的处理方法,python字符串,python如何
- 用python计算1到100的和源码详解,python100源码详解,用p
评论关闭