Python科学计算库Numpy数组的初始化和基本操作,pythonnumpy,这种工具可用来存储和
Python科学计算库Numpy数组的初始化和基本操作,pythonnumpy,这种工具可用来存储和
NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。它包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
今天我们来看下Numpy数组。
一. Numpy数组对象
Numpy中的多维数组称为ndarray,它有两个组成部分。
数据本身。
描述数据的元数据。
它有以下几个属性:
ndarray.ndim:数组的维数
ndarray.shape:数组每一维的大小
ndarray.size:数组中全部元素的数量
ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and numpy.float64等)
ndarray.itemsize:每个元素占几个字节
在数组的处理过程中,原始数据不受影响,变化的只是元数据。
Numpy数组通常是由相同种类的元素组成,即数组中数据类型必须一致。好处是:数组元素类型相同,可轻松确定存储数组所需的空间大小。同时,numpy可运用向量化运算来处理整个数组。Numpy数组的索引从0开始。
例子:
>>> import numpy as np >>> a = np.arange(15).reshape(3, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>> a.shape (3, 5) >>> a.ndim 2 >>> a.dtype.name 'int64' >>> a.itemsize 8 >>> a.size 15 >>> type(a) <type 'numpy.ndarray'> >>> b = np.array([6, 7, 8]) >>> b array([6, 7, 8]) >>> type(b) <type 'numpy.ndarray'>
二.创建数组:
使用array函数讲tuple和list转为array:
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
多维数组:
>>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
生成数组的同时指定类型:
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
生成数组并赋为特殊值:
ones:全1
zeros:全0
empty:随机数,取决于内存情况
>>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # uninitialized, output may vary array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260], [ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
生成均匀分布的array:
arange(最小值,最大值,步长)(左闭右开)
linspace(最小值,最大值,元素数量)
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) >>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2 array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points
三.基本运算:
整个array按顺序参与运算:
>>> a = np.array( [20,30,40,50] ) >>> b = np.arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([ True, True, False, False], dtype=bool)
两个二维使用*符号仍然是按位置一对一相乘,如果想表示矩阵乘法,使用dot:
>>> A = np.array( [[1,1], ... [0,1]] ) >>> B = np.array( [[2,0], ... [3,4]] ) >>> A*B # elementwise product array([[2, 0], [0, 4]]) >>> A.dot(B) # matrix product array([[5, 4], [3, 4]]) >>> np.dot(A, B) # another matrix product array([[5, 4], [3, 4]])
内置函数(min,max,sum),同时可以使用axis指定对哪一维进行操作:
>>> b = np.arange(12).reshape(3,4) >>> b array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> >>> b.sum(axis=0) # sum of each column array([12, 15, 18, 21]) >>> >>> b.min(axis=1) # min of each row array([0, 4, 8]) >>> >>> b.cumsum(axis=1) # cumulative sum along each row array([[ 0, 1, 3, 6], [ 4, 9, 15, 22], [ 8, 17, 27, 38]])
Numpy同时提供很多全局函数
>>> B = np.arange(3) >>> B array([0, 1, 2]) >>> np.exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> np.sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = np.array([2., -1., 4.]) >>> np.add(B, C) array([ 2., 0., 6.])
四.寻址,索引和遍历:
一维数组的遍历语法和Python list类似:
>>> a = np.arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed a array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a: ... print(i**(1/3.)) ... nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
多维数组的访问通过给每一维指定一个索引,顺序是先高维再低维:
>>> def f(x,y): ... return 10*x+y ... >>> b = np.fromfunction(f,(5,4),dtype=int) >>> b array([[ 0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]]) >>> b[2,3] 23 >>> b[0:5, 1] # each row in the second column of b array([ 1, 11, 21, 31, 41]) >>> b[ : ,1] # equivalent to the previous example array([ 1, 11, 21, 31, 41]) >>> b[1:3, : ] # each column in the second and third row of b array([[10, 11, 12, 13], [20, 21, 22, 23]]) When fewer indices are provided than the number of axes, the missing indices are considered complete slices: >>> >>> b[-1] # the last row. Equivalent to b[-1,:] array([40, 41, 42, 43])
…符号表示将所有未指定索引的维度均赋为 : ,:在python中表示该维所有元素:
>>> c = np.array( [[[ 0, 1, 2], # a 3D array (two stacked 2D arrays) ... [ 10, 12, 13]], ... [[100,101,102], ... [110,112,113]]]) >>> c.shape (2, 2, 3) >>> c[1,...] # same as c[1,:,:] or c[1] array([[100, 101, 102], [110, 112, 113]]) >>> c[...,2] # same as c[:,:,2] array([[ 2, 13], [102, 113]])
遍历:
如果只想遍历整个array可以直接使用:
>>> for row in b: ... print(row) ... [0 1 2 3] [10 11 12 13] [20 21 22 23] [30 31 32 33] [40 41 42 43]
但是如果要对每个元素进行操作,就要使用flat属性,这是一个遍历整个数组的迭代器
>>> for element in b.flat: ... print(element) ... 0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43
相关内容
- numpy 基础入门 - 30分钟学会numpy,入门numpy,其实,list已
- Python科学计算 - Numpy快速入门,pythonnumpy,它可用来存储
- NumPy常用方法总结,numpy总结,这种工具可用来存储和
- Numpy array数据的增、删、改、查实例,numpyarray,>>
- 如何获得NumPy的最佳性能,获得NumPy最佳性能,未经许可
- Python数据分析 - Numpy,pythonnumpy,如今,np被Python
- Numpy 小结,numpy小结,NumPy是Python
- numpy:python数据领域的功臣,numpypython,现在用python搞数
- python numpy基础 数组和矢量计算,pythonnumpy, 下面来看下
- 10天100小时学数据科学,我推荐你这样学!,10天100小时
评论关闭