Python数据库操作-SQLAlchemy,,ORM之sqlalc


ORM之sqlalchemy


基础


使用SQLAlchemy链接数据库

from sqlalchemy import create_enginefrom sqlalchemy.ext.declarative import declarative_baseengine = create_engine("mysql+pymysql://root:Leon@localhost/study?charset=utf8",encoding='utf-8',echo=True)Base = declarative_base()

创建数据表

from sqlalchemy import Column, Integer, Stringclass User(Base):    __tablename__ = 'user'  # 表名    # 各个字段    id = Column(Integer, primary_key=True) # 主键    name = Column(String(32))    password = Column(String(64))    def __repr__(self):  # 返回数据定义        return "[%s,%s,%s]"%(self.id,self.name,self.password)Base.metadata.create_all(engine)  # 创建表结构
其他的一些经常用到的地方
        # Column中还可以设定是否唯一:unique=True        # 设置值不为空:nullable=False        # 时间格式为:DateTime        # 枚举值:Column(Enum("1","2","3"))        # 布尔值:Boolean,表现形式为True/False

添加数据

Session_class = sessionmaker(bind=engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例session = Session_class()  # 生成session实例#adduser_obj = User(name="Leon", password="123456")user_obj1 = User(name="张三", password="156")session.add_all([user_obj,user_obj1])  #添加# session.add(obj1)这样可以单个的添加session.comiit() #事务提交

查询数据

# 返回数据需要在类中的__repr__中设定session.query(User).filter(User.name=="Leon").first()  # 查询第一个session.query(User).filter(User.name=="Leon").all()  # 查询多个,返回一个可循环列表对象# 多个查询使用多个filter进行过滤# 也可以在filter中用逗号`,`来and匹配

数据修改

user_obj = session.query(User).filter(User.name=="Leon").first()user_obj.password = "NewPassword"session.comiit()

数据删除

obj = session.query(User).filter(User.name=="Leon").first()session.delete(obj)session.commit()

统计

print(session.query(User).filter(User.name=="Leon").count())

分组

from sqlalchemy import funcprint(session.query(func.count(User.name),User.name).group_by(User.name).all())

深入章节

外键关联

1.设置外键

+ 场景:一个学生拥有多个上课记录+ 数据库表结构

技术图片

class Student(Base):    __tablename__ = "student"    id = Column(Integer,primary_key=True)    name = Column(String(32),nullable=False)    register_data = Column(DATE,nullable=False)    def __repr__(self):        return "%s,%s" % (self.id, self.name)class StudyRecord(Base):    __tablename__ = 'study_record'     id = Column(Integer, primary_key=True)    day = Column(Integer,nullable=False)    status = Column(String(32),nullable=False)    stu_id = Column(Integer,ForeignKey('student.id'))    # 加上一个关系,在这个表中可以通过student来反查student表中的数据,而在student表中可以通过my_study_record来反查StudyRecord中的数据    student = relationship("Student",backref="my_study_record")        def __repr__(self):        return "%s day:%s status: %s"%(self.student.name,self.day,self.status)

2.在表中查询数据

# 查询某个人的上课记录stu_obj = session.query(Student).filter(Student.name=="Leon").first()print(stu_obj.my_study_record)  # 在student表中通过my_study_record来反查StudyRecord中的数据,显示跟局repr来定,此处返回字符串# 连表反向查询,查询没来上课的人record_obj = session.query(StudyRecord).filter(StudyRecord.status=="NO").first()print(record_obj.student)

多外键关联

1.多外键

场景:一个电商用户,拥有两个地址,一个用来收取商品、另外一个用来邮寄账单数据库表结构设计:
技术图片
class Customer(Base):    __tablename__ = 'customer'    id = Column(Integer, primary_key=True)    name = Column(String(64))    billing_address_id = Column(Integer, ForeignKey("address.id"))    shipping_address_id = Column(Integer, ForeignKey("address.id"))    # 一个人对应一个账单地址和一个购物地址    address_b = relationship("Address",backref="my_addr_bill",foreign_keys=[billing_address_id])    address_s = relationship("Address",backref="my_addr_shop",foreign_keys=[shipping_address_id])    def __repr__(self):        return "name:%s"%self.nameclass Address(Base):    __tablename__ = 'address'    id = Column(Integer, primary_key=True)    street = Column(String(64))    city = Column(String(64))    state = Column(String(64))    def __repr__(self):        return "street:%s|city:%s|state:%s"%(self.street,self.city,self.state)

2.添加数据

a1 = Address(street='望京',city='北京',state="中国")a2 = Address(street='雁塔',city='西安',state="中国")a3 = Address(street='太原',city='山西',state="中国")session.add_all([a1,a2,a3])c1 = Customer(name="Leon",address_b=a1,address_s=a2)c2 = Customer(name="eric",address_b=a1,address_s=a3)session.add_all([c1,c2])session.commit()

3.在此表中查询数据

# 通过名字直接查询他的两个地址customer_obj = session.query(Customer).filter(Customer.name=="Leon").first()print(customer_obj.address_b,customer_obj.address_s)# 通过地址查询该地址属于谁Add_obj = session.query(Address).filter(Address.city=="北京").first()print(Add_obj.my_addr_bill)

多对多关联

1.创建表结构

场景:一个作者可以写很多本书,一本书有多个做这个数据库关系:
技术图片
# 一个作者可以出版很多本书,一本书有很多个作者,直接用第三张表来讲作者表和图书表关联起来class Author(Base):    __tablename__ = 'authors'    id = Column(Integer, primary_key=True)    name = Column(String(32))  # 作者    def __repr__(self):        return self.namebook_m2m_author = Table('book_m2m_author', Base.metadata,                        Column('book_id',Integer,ForeignKey('books.id')),                        Column('author_id',Integer,ForeignKey('authors.id')),                        )class Book(Base):    __tablename__ = 'books'    id = Column(Integer,primary_key=True)    name = Column(String(64))    pub_date = Column(DATE)  # 出版日期    authors = relationship('Author',secondary=book_m2m_author,backref='books')    def __repr__(self):        return self.name

2.添加数据

# 添加数据b1 = Book(name='Python',pub_date='2017-08-29')b2 = Book(name='Linux',pub_date='2011-5-2')b3 = Book(name='PHP',pub_date='2012-3-9')b4 = Book(name='Java',pub_date='2015-11-2')a1 = Author(name="Leon")a2 = Author(name="Jack")a3 = Author(name="Rain")#建立关系b1.authors=[a1,a2]b2.authors=[a1,a3]b3.authors=[a2,a3]b4.authors=[a1,a2,a3]Session_class = sessionmaker(bind=engine)session = Session_class()session.add_all([b1,b2,b3,b4,a1,a2,a3])session.commit()

3.数据查询

book_obj = session.query(Book).filter(Book.name=='Python').first()print(book_obj.authors)authors_obj = session.query(Author).filter(Author.name=="Leon").first()print(authors_obj.books)

4.此时删除数据

删除一本书中的某一个作者
author_obj =s.query(Author).filter_by(name="Jack").first() book_obj = s.query(Book).filter_by(name="Python").first() book_obj.authors.remove(author_obj) #从一本书里删除一个作者session.commit()
直接删除作者或者一本书,这样book_m2m_author表中的数据也会自动更新
author_obj =s.query(Author).filter_by(name="Alex").first()session.delete(author_obj)session.commit()

Python数据库操作-SQLAlchemy

评论关闭