yolov5使用flask部署至前端实现照片\视频识别功能,


目录
  • 前言
  • 实现功能:
  • 效果图如下
  • 文件结构如下:
  • 相关代码:
  • 使用说明:
  • 总结

前言

初学yolo flask时,需要此功能,Csdn、Github、B站找到许多代码,效果并不满意。

近期,再度尝试,实现简单功能。

实现功能:

上传图片并识别,可以点击图片放大查看

上传视频并识别

识别后的文件下载功能

效果图如下

文件结构如下:

project/
  static/

  空

  templates/
    index.html
    
  app.py

相关代码:

app.py

import cv2
import numpy as np
import torch
from flask import Flask, request, jsonify, render_template
import base64
import os
from datetime import datetime

app = Flask(__name__)

# 全局变量:模型
model = None

# 提前加载模型
def load_model():
    global model
    model = torch.hub.load('', 'custom', path='yolov5s.pt', source='local')

# 路由处理图片检测请求
@app.route('/predict_image', methods=['POST'])
def predict_image():
    global model

    # 获取图像文件
    file = request.files['image']
    # 读取图像数据并转换为RGB格式
    image_data = file.read()
    nparr = np.frombuffer(image_data, np.uint8)
    image = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)

    results = model(image)

    image = results.render()[0]

    # 将图像转换为 base64 编码的字符串
    _, buffer = cv2.imencode('.png', image)
    image_str = base64.b64encode(buffer).decode('utf-8')

    # 获取当前时间,并将其格式化为字符串
    current_time = datetime.now().strftime('%Y%m%d%H%M%S')
    # 构建保存路径
    save_dir = 'static'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    filename, extension = os.path.splitext(file.filename)  # 获取上传文件的文件名和扩展名
    save_filename = f'{filename}_{current_time}{extension}'
    save_path = os.path.join(save_dir, save_filename)
    cv2.imwrite(save_path, image)

    return jsonify({'image': image_str})

# 函数用于在视频帧上绘制检测结果
def detect_objects(frame, model):
    results = model(frame)
    detections = results.xyxy[0].cpu().numpy()  # 获取检测结果

    # 在帧上绘制检测结果
    for det in detections:
        # 获取边界框信息
        x1, y1, x2, y2, conf, class_id = det[:6]

        # 在帧上绘制边界框
        cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)

        # 在帧上绘制类别和置信度
        label = f'{model.names[int(class_id)]} {conf:.2f}'
        cv2.putText(frame, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    return frame

# 路由处理视频检测请求

@app.route("/predict_video", methods=["POST"])
def predict_video():
    global model

    # 从请求中获取视频文件
    video_file = request.files["video"]
    # 保存视频到临时文件
    temp_video_path = "temp_video.mp4"
    video_file.save(temp_video_path)

    # 逐帧读取视频
    video = cv2.VideoCapture(temp_video_path)

    # 获取视频的帧率和尺寸
    fps = video.get(cv2.CAP_PROP_FPS)
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # 视频写入对象
    output_video_filename = f"output_video_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4"
    output_video_path = os.path.join("static", output_video_filename)
    fourcc = cv2.VideoWriter_fourcc(*"avc1")
    out_video = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

    # 逐帧处理视频并进行目标检测
    while True:
        ret, frame = video.read()
        if not ret:
            break

        # 进行目标检测
        detection_result = detect_objects(frame, model)

        # 将处理后的帧写入输出视频
        out_video.write(detection_result)

    # 释放视频对象
    video.release()
    out_video.release()

    return jsonify({"output_video_path": output_video_filename})

@app.route('/')
def index():
    return render_template('index.html')

# 初始加载模型
load_model()

if __name__ == '__main__':
    app.run(debug=True)

index.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Object Detection</title>
    <style>
        body {
            font-family: Arial, sans-serif;
            margin: 0;
            padding: 0;
            background-color: #f3f3f3;
            display: flex;
            justify-content: center;
            align-items: center;
            height: 100vh;
            flex-direction: column;
        }

        #content {
            text-align: center;
            max-width: 820px;
            margin-top: 20px;
        }

        h1 {
            color: #333;
        }

        h2 {
            color: #666;
        }

        input[type="file"] {
            margin-bottom: 10px;
        }

        .media-container {
            display: flex;
            max-width: 100%;
            margin-bottom: 20px;
        }

        .media-container:first-child {
            margin-right: 20px; /* 在第一个容器的右侧添加间隔 */
        }

        .media-container img,
        .media-container video {
            max-width: 100%;
            height: auto;
        }

        .original {
            width: 400px;
            overflow: hidden;
        }

        .processed {
            flex: 2; /* 右边容器占据剩余空间 */
        }

        button {
            padding: 10px 20px;
            background-color: #007bff;
            color: #fff;
            border: none;
            border-radius: 5px;
            cursor: pointer;
            margin-bottom: 10px;
        }

        /* 新增样式:模态框 */
        .modal {
            display: none; /* 默认隐藏 */
            position: fixed;
            z-index: 1;
            left: 0;
            top: 0;
            width: 100%;
            height: 100%;
            overflow: auto;
            background-color: rgba(0, 0, 0, 0.9); /* 半透明黑色背景 */
        }

        .modal-content {
            margin: auto;
            display: block;
            width: 80%;
            max-width: 800px;
            position: absolute;
            left: 50%;
            top: 50%;
            transform: translate(-50%, -50%);
            text-align: center; /* 居中显示图片 */
        }

        .close {
            color: #ccc;
            font-size: 36px;
            font-weight: bold;
            cursor: pointer;
            position: absolute;
            top: 10px;
            right: 10px;
        }

        .close:hover,
        .close:focus {
            color: #fff;
            text-decoration: none;
        }
        #downloadButton {
           padding: 10px 20px;
            background-color: #007bff;
            color: #fff;
            border: none;
            border-radius: 5px;
            cursor: pointer;
            margin-bottom: 10px;

        }

        /* 新增样式:响应式图片 */
        .modal-content img,
        .modal-content video {
            max-width: 100%;
            height: auto;
        }

    </style>
</head>
<body>

    <!-- 新增模态框 -->
    <div id="myModal" class="modal" onclick="closeModal()">
        <div class="modal-content" id="modalContent" onclick="stopPropagation(event)">
            <!-- 放大后的图片或视频将在这里显示 -->
            <span class="close" onclick="closeModal()">&times;</span>
        </div>
    </div>

    <div id="content">
        <h1>照片/视频检测</h1>

        <!-- 上传图片 -->
        <h2>上传图片</h2>
        <input type="file" id="imageFile" accept="image/*" onchange="displaySelectedImage()">
        <button onclick="uploadImage()">上传</button>
        <button id="downloadImageButton"  onclick="downloadProcessedImage()">下载</button>
        <br>
        <div class="media-container">
            <div class="original media-container" onclick="enlargeImage()">
                <img id="uploadedImage" src="#" alt="Uploaded Image" style="display:none;">
                <button id="zoomInButton" style="display:none;">Zoom In</button>
            </div>
            <div class="processed media-container" onclick="enlargeImage2()">
                <img id="processedImage" src="#" alt="Processed Image" style="display:none;">

            </div>
        </div>
        <br>

        <!-- 上传视频 -->
        <h2>上传视频</h2>
        <input type="file" id="videoFile" accept="video/mp4,video/x-m4v,video/*" onchange="displaySelectedVideo()">
        <button onclick="uploadVideo()">上传</button>
        <button id="downloadButton" onclick="downloadProcessedVideo()">下载</button>
        <br>
        <div class="media-container">
            <div class="original media-container" >
                <video id="uploadedVideo" src="#" controls style="display:none;"></video>
            </div>
            <div class="processed media-container">
                <video id="processedVideo" controls style="display:none;"></video>

            </div>
        </div>
        <br>

    </div>

    <script>
         // 显示选择的权重文件

        // 显示选择的图片并添加点击放大功能
        function displaySelectedImage() {
            var fileInput = document.getElementById('imageFile');
            var file = fileInput.files[0];
            var imageElement = document.getElementById('uploadedImage');
            imageElement.src = URL.createObjectURL(file);
            imageElement.style.display = 'inline';
            document.getElementById('zoomInButton').style.display = 'inline';
        }

        // 显示模态框并放大图片
        function enlargeImage() {
            var modal = document.getElementById('myModal');
            var modalImg = document.getElementById('modalContent');
            var img = document.getElementById('uploadedImage');
            modal.style.display = 'block';
            modalImg.innerHTML = '<img src="' + img.src + '">';
        }
        // 显示模态框并放大图片
        function enlargeImage2() {
            var modal = document.getElementById('myModal');
            var modalImg = document.getElementById('modalContent');
            var img = document.getElementById('processedImage');
            modal.style.display = 'block';
            modalImg.innerHTML = '<img src="' + img.src + '">';
        }


        // 显示选择的视频并添加点击放大功能
        function displaySelectedVideo() {
            var fileInput = document.getElementById('videoFile');
            var file = fileInput.files[0];
            var videoElement = document.getElementById('uploadedVideo');
            videoElement.src = URL.createObjectURL(file);
            videoElement.style.display = 'block';
        }


        // 上传图片并向后端发送请求
        function uploadImage() {
            var fileInput = document.getElementById('imageFile');
            var file = fileInput.files[0];
            var formData = new FormData();
            formData.append('image', file);

            fetch('/predict_image', {
                method: 'POST',
                body: formData
            })
            .then(response => response.json())
            .then(data => {
                var imageElement = document.getElementById('processedImage');
                imageElement.src = 'data:image/png;base64,' + data.image;
                imageElement.style.display = 'inline';
                document.getElementById('downloadImageButton').style.display = 'inline';
            })
            .catch(error => console.error('Error:', error));
        }

        // 下载处理后的图片
        function downloadProcessedImage() {
            var imageElement = document.getElementById('processedImage');
            var url = imageElement.src;
            var a = document.createElement('a');
            a.href = url;
            a.download = 'processed_image.png';
            document.body.appendChild(a);
            a.click();
            document.body.removeChild(a);
        }

        // 上传视频并向后端发送请求
        function uploadVideo() {
            var fileInput = document.getElementById('videoFile');
            var file = fileInput.files[0];
            var formData = new FormData();
            formData.append('video', file);

            fetch('/predict_video', {
                method: 'POST',
                body: formData
            })
            .then(response => response.json())
            .then(data => {
                var videoElement = document.getElementById('processedVideo');
                // 修改路径为正确的 Flask url_for 生成的路径
                videoElement.src = '{{ url_for("static", filename="") }}' + data.output_video_path;
                videoElement.style.display = 'block';
                var downloadButton = document.getElementById('downloadButton');
                downloadButton.style.display = 'block';
            })
            .catch(error => console.error('Error:', error));
        }

        // 下载处理后的视频
        function downloadProcessedVideo() {
            var videoElement = document.getElementById('processedVideo');
            var url = videoElement.src;
            var a = document.createElement('a');
            a.href = url;
            a.download = 'processed_video.mp4';
            document.body.appendChild(a);
            a.click();
            document.body.removeChild(a);
        }

        // 关闭模态框
        function closeModal() {
            var modal = document.getElementById('myModal');
            modal.style.display = 'none';
        }
    </script>
</body>
</html>

使用说明:

index.html放入templates文件夹中

运行app.py

注:此处加载模型路径更改为自己的

model = torch.hub.load('', 'custom', path='yolov5s.pt', source='local')

如果模型读取不到,显示

FileNotFoundError: [Errno 2] No such file or directory: 'hubconf.py'

去yolov5官网,下载yolov5-master到项目文件夹

并将yolov5s.pt文件复制到yolov5-master文件夹中,修改model路径

model = torch.hub.load('yolov5-master', 'custom', path='yolov5s.pt', source='local')

总结

到此这篇关于yolov5使用flask部署至前端实现照片\视频识别功能的文章就介绍到这了,更多相关yolov5 flask部署前端照片视频识别内容请搜索3672js教程以前的文章或继续浏览下面的相关文章希望大家以后多多支持3672js教程!

您可能感兴趣的文章:
  • YOLOv5部署到web端详细过程(flask+js简单易懂)

评论关闭